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Abstract 

X program is proposed to construct dynamical models which produce gauge 

boson hierarchies without fine tuning. The low energy physics is described by the 

global symmetry group G, a coset manifold G/H representing Goldstone modes and 

a “superweak” gauge group H, c G. The essential feature of these models is that 

H, can not be embedded into the unbroken subgroup H ,i.e.H, @ H. It is argued 

that the effective potential induced by the “superweak” interactions can reproduce 

a Higgs potential with an intrinsicaily small parameter “Higgs mass”/UHiggs self 

coupling” - O(a,). The salient features of the program are illustrated in a model 

with G/H = SCJ(S)/Sp(S) and H, = SU(2) g Sp(6). In particular it is shown 
that a nontrivial Higgs self interaction (without mass term) can be generated in the 

leading order of “superweak” interactions. 
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The origin of the Fermi scale seems to be the key to understanding the physics 

underlying the standard model. The attempts to unravel its nature is compounded 

by the fact that not only are the masses of weak vector bosons generated at that 

scale but also those of fermions. The initial enthusiasm for the technicolor origin of 

the Fermi scale (1,2] has mainly subsided because it does not address this second 

issue.The extended technicolor models [3,4] h ave not met the challenge of explain- 

ing the fermion mazs spectrum successfully. The situation calls for an alternative 

dynamical framework for generating the Fermi scale. 

There seems to be ample evidence to believe that the fermion masses are gener- 

ated sequentially i.e. “fed downn from higher to lower generations via superheavy 

gauge boson exchanges (see e.g. Ref. (5]).The “feed down” mechanismmay be viable 

in the dynamical framework provided the composite Higgs behaves as an elementary 

object throughout the energy range extending to the mass scale (A) of superheavy 

gauge bosons. This suggest5 that the composite Higgs is a pseudoGoldstone boson 

of a fundamental dynamics which is the source of the superheavy gauge bosonz.The 

approach pursued in this note incorporates this essential feature naturally. 

The idea of the composite Higgs as a pseudo-Goldstone boson was originally 

advanced by Georgi et al.(6].These authors have argued that to the lowest order in 

gauge couplings the effective potential induced by an appropriately chosen super- 

weak interactions can produce a Higgs condensate. Unfortunately,in such approach 

an adequate Fermi scale Ap and a dynamical hierarchy AF << A results only if the 

gauge couplings are fine tuned. In this note a general program will be proposed to 

identify models which can produce dynamical hierarchies without this fine tuning. 

Furthermore, a specific model will be constructed to exhibit some of the important 

feature5 of the general program. 

It will be assumed that the low energy models considered below arise from an as 

yet unknown strong dynamics of fermions and gauge bosons. The models in question 

are described by a global symmetry group G which is broken down dynamically to 

H C G and also explicitly broken down to a subgroup of G containing the gauge 

group H, C G of superweak interactions [y]. The embedding H, c G defined up 

to conjugacy eH,e-‘, e E G/H should b&xed dynamically, i.e., by minimizing the 

effective potential V(e) generated by H,-interactions in various orders of its fine 

structure constant cc, = gi/45 [S-11]. 



-2- FERMILAB-P&gB/lSQ-T 

The effective potential V (t(z)) = V ( ) z can be viewed BS a function defined on 

the coset manifold G/H with coordinates (9) representing would-be Goldstone 

modes of the strong dynamics. In general, the minimum z” = <” of V (2) is de- 

termined in two stages. First, one identifies the submanifold M C G/H on which 

the leading component V(‘)(z) - o, of V(z) attains its minimum. Next, one iden- 

tifies [ E M by minimizing on M the higher order component V@)(z) - O(cz.,) of 

V(z). The broken generators of the “aligned” gauge group Hz = L(t) H,f-* (f) 

are sources of superweak gauge bosom with masses M, - gyA whereas unbroken 

generators form the surviving gauge subgroup H: c Hz. 

We are now in a position to state the necessary conditions for the breakdown 

of the residual symmetry HL and generation of a dynamical hierarchy with a new 

mass scale tiw < M,. Consider fluctuations I$ = { zs - CM} about the miniium 

{{p} in a direction 6 which is not neutral under Hk. The associated would be GE 

mode will break the gauge symmetry HL provided it condenses,i.e. 

V(l) (4) = a&” + 0 (p+a) ( (1) 

v(*) (4) = -,,$*‘” + 0 (,2m+2) , (2) 

where 

a>b>O,andl<m<n. (3) 

Here a - a,,, and normally b - aElna, (See e.g. Ref 1111). Under the above 

conditions, some HL gauge boson is rendered massive and a dynamical hierarchy 

results: 

M’,’ - g:A’ (b/a)& < g:A’ - Mt (4) 

Two important remarks are in order. First, the absence of quadratic fluctua- 

tions in Eq.(l) imposes a stringent constraint on the models in question. Indeed 

it demands that the gauge group H, can not be embedded into H,i.e. gH,g-’ $ 

H,g E G.Otherwise the generators which are the sources of such fluctuations would 

commute with Hz and fluctuations of all orders would be absent. Secondly, the 

extremum ~9’ = E’ E M is required to-be a saddle point of V(*)(z) since it is by 

definition a miniium for deviations tangential to M and according to Eqs.(2,3) a 

maximum for normal deviations to M. In the rest of this note the property (1) will 
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be demonstrated in a specific model. The investigation of the property (2) will be 

differed to the future publication [12]. 

Let us make the following identifications 

G = N(6) , H = Sp(6) , and H, = S&,(2) (5) 

Furthermore we specify the SU,(2) content of the fundamental representation of 

SU(6) : 5 = 3 + 3 x 1 which excludes the possibility of embedding of SUW(2) into 

Sp(6). It is convenient to choose SU(6) g enerators (X,) in the form of a direct 

product of Pauli (oo, a = 0, . . . . 3) and Gell-Mann (X,, a = 0, . . . . 3) matrices X, - 

oI @ X, which will be assumed to be normalized ss TrfX~xs) = 6a; The unbroken 

(H;) and broken generators (K,.,,) are identified by the conditions alHio2 = -H; 

and azK,,,az = K,,, where the tilda indicates the transposed matrices. The SU,(2) 

generators (X,, Q = 1,2,3) are 2&Xm = a, @ h + 1 @ X, with h = $ i As/& 

Note that there is a He = UC(l) @ SU,(2) “custodial” symmetry generated 

by X’ = or @ h + 18 Xz and Xi = o, @ (1 - h),a = 1,2,3, which will play 

an important role in the following discussions. The Uc( 1) component represents 

a would be massless gauge boson and its breaking may give rise to a dynamical 

hierarchy as will be discussed later. 

Now the calculation of the leading order effective potential V(*)(z) will be brie5y 

described. The V(1)(z) is given in terms of the gauge boson mass square matrix 

&(z) as follows 

v(‘) = CTr{/.L(z)} 63) 

h&b) = Tr(x,(z)K,}Tr{x~(z)K,) (7) 

-L(z) = I’(z)XJ(z), l(z) E SV(6)/SP(6) (8) 

where overall scales have been absorbed into the constant C. There is an equivalent 

form of Eq.(6) which provides a more economic framework for calculations 

2&(4 = 6m, + z+ { u2x7(+7*&+)} (9) 

The task is further facilitated by a canonical parameterization of the coset element 
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e(Z): 

L(z) = el(a)e*(P,7) (10) 

f,(6) = ezp(i&ciX2) E SU(4)/Sp(4) (11) 

e2(p,7) = eZP 
1 

~(/%b f PiUib) f i(7Ok f7iuiA7) 1 02) 

Here the broken generators X., a = 1,3 and Xs have been dropped since the former 

can be gauged away whereas the latter commutes with SU,,,(2). Note that the coset 

elements ei and et are functions respectively of one (06) and two (up, u,) quaternions 

and their hermitian conjugates 

06 = &? (13) 

up = i/30 -t&5 (14) 

u-7 = ipj++ (15) 

It is important to identify their He = U.(l) @ SU,(2) content. One easily deter- 

mines that they represent a singlet (ur) and two doublets (as,u,) of SU,(Z). The 

UC(l) content of UJ is also obvious i.e.the n z 6r is neutral whereas the combination 

$’ E 61 - i& has two unites of UC(l) charge. The U<(l) content of up snd.u, may 

be unraveled by considering the decomposition 

@ 3 Up + iu, = k@if& 
I=, 

given in terms of the projection operators 

Pi = (I+ Gu*)/Ji, i= 1,4, e* = -6, = 1 

pi = (~1 - icios)/JZ, i = 2,3, ~7, = -6s = 1 
(17) 

Hence one readily identifies the SUe(2) doublets 2 = (& I&) and @ = (4s 4,) as 

UC(l) singlets with zero and two unites of UC(l) charges respectively. 

The advantage of the parametrization (lJl - 12) becomes obvious from the re- 

duced form of the mass matrix (9): 

2& = 6oe i Tr (a&,udJ+XBU) (18) 
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with 

u = e&e, (19) 

The evaluation of (18) requires only the knowledge of the 4 x 4 submatrix of U 

which may be represented as 

Uo E (U;k)i+r,...,r = 5 (A,. + iBa.)(uo @ 7.) (20) 
a,%?=0 

The calculation of the coefficients A,. and B,, proceeds from the formula 

G-ezP(-Og, f) = (y &&) (21) 

where 

B’ = (u:, uf) (22) 

L = B(sinm)/m (33) 

Note that the matrix element with a square root in Eq.(21) may be easily realized 

due to the simple properties of the quaternions u-$0 = p,2 + p’ c p* etc: 

B’B = ~2+7zrw2 (24) 

dz = cosd%? = l+ BB+(cosw - 1)/w* (25) 

Now the coefficients A,. and B,, can be calculated by a direct multiplication of the 

matrices in Eq.(19). The nonvanishing coefficients are found to be 

~(Aoo + iBoo) = 2C*W* - iSziiT’r(*+Ui*) (W 

4(Ao3 - iAcr) = -I?(@‘&) (27) 

4(A<z + iBir) = [-6;k + (1 - cr)&z,] Tr(Q'uk@) + 2iszw2& (28) 

with the abbreviations c2 = ~0~26, s2 = sin26,6* = $2,; = z/6 and ;f = urQ*ur. 

We return to the mass matrix (18) with the results (20,26-28) and after some 

algebra arrive at the simple formula 

G’,@ = 6as - ZmZ, - yceys (29) 
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Here the three-vectors Y and 2 are defined in terms of the above coefficients as 

follows 

w*z, = -(I + ~~~~)~006.52 + (1 - cosw)A,2 (30) 

W2Y, = (I+ cosw)B,z i (1 - COSW)(A~~~~~ - ~~6.~ - ~~~6,~) (31) 

The eigenvalues of the matrix (29) are determined without difficulty 

2/L; = 1 (32) 

2p; = 1 - ; {z’ + Y’) * J(Z2 - Y*)s + 4(ZY)‘) (33) 

This in particular implies 

2Tr($) = 3- (z*+Y*) (34) 

4Tr(p’) = 3 - 2(Z2 + Y’) + (Z’ + Yy - 2 [z*y* - (ZY)‘] (35) 

Hence the effective potential (6) can be deduced by a straightforward evaluation of 

X2 and Y2 , 

VW 

2% {a’ [(l - crus - (1 - c~)u;&$~] i9 - srRe [@‘(Ai -i&)5]) (36) 

It is easy to verify that the result is invariant under the custodial sy~etry H, = 

Ue(l) @J SUe(2). However the invariance may be also rendered manifest by passing 
to the H, multiplets {n, $,x,p}, 

VW _ 1 + Asin* Jii . 

2 (l4z + 1x1') 

{~21~121x/z + (1 - s2/rcI12)lrp12 - 2s [c(xw)rlr + s(x’p)fl$ + C.C.]} (37) 

where 

s = sin 6 16, c = cos 6, 6r = I$/* + nr (33) 
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The final step of the derivation is to verify that the expression in the curly brackets 

is positive. This is achieved by recasting it in a quadratic form 

VW - 1+ i &* d--G ( +(&) + y,c(p$)’ 
2 (IPI’ + 1x1’) 

f =Xx -+ Y,CX’ I2 (393 

where the two dimensional vectors rl, = (z,, yW) , w = ‘p, x are fixed by the condi- 

tions 

c = (s6)2 ( 7; = 1 - r$61’ (40) 

Fp. f; = - x6, Fv x r; = - (s6)*q (41) 

It can be also shown that the derivation of Eq, (39) may be effected by a uni- 

tary transformation on the quaternions (os, a,) - (Q’,UJ which reduces the 

expression in the curly brackets to r’*. 

Now we are in a position to demonstrate how the first necessary condition for dy- 

namical hierarchies may be realized in our model (see Es(l)) .The effective potential 

(37) attains its minimum on two submanifolds Mi C SU(6)/Sp(6),i = 1,2, 

Ml : 14Jx12 + (1 - Is1(112) lPI2 - 29 [CJ, (xw) + WtL (x’v) + C.C.] = 0 (42) 

M2 : l’p)* f (xl* = i(2n + 1) s]’ (43) 

The degeneracy of the minima will be lifted by the higher order contribution Vfz) (2) 

to the effective potential V(z). (c.f. Eq. (2)). It will be assumed that at the 

minimum of V(‘) (z E Mi) the parameter $J vanishes $ = $,,, = 0; A nonvanishiig 

&,, # 0 would render the U.(l) gauge boson massive without leading to a dynamical 

hierarchy. Then the condition (41) implies IQ = p,,, = 0 and the gauge boson 

spectrum follows from Eqs. (30-33). 

-Z./cos26=Y,6/rlsin26=6,2, *=p=O (44) 

/&=p- =;, /A+ = 0. (45) 

Observe that one of the gauge bosons remains massless for an arbitrary value of 

x = Xm. This is because the {x,,, # Ol&, = p,,, = 0) triggers a breakdown SU,(2) @I 

UC(l) + U,(l) and surviving U,,(l) generated by (orb + Xr) + os (1 - h) represents 

the massless mode in the spectrum (45). 
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Returning to Eq.(37), one finds that the expansion about Qrn = pm = 0, xrn # 0 

does not lead to the condition (1) unless the m:nimum is on the intersection of the 

manifolds Ml and M2, i.e., lx,,,/* = [(2n + 1) xl*. Therefore we turn to the second 

possibility (42). The ‘critical” points of interest are $J, = xm (rp,) = 0 which imply 

the same mass spectrum as (46) and moreover lead to the required behavior of the 

effective potential (c.f. Eq. (1)). 

v(l) (& = xm = 0) - 1x1’ (46) 

V(l) (& = pm = 0) - ipI6 (47) 

The distinct behaviors (46) and (47) reflect different breaking patterns of the custo- 

dial symmetry I-i, -+ UC(l) or H. + U,(l). Evidently, the UC(l) or U,(l) symmetry 

will break down and the dynamical hierarchy will result if the condition (2) holds. 

It should be m-emphasized that the assumption (L,,, = x,,,((P,,,) = 0 underlying 

the above results depends on the higher order effective potential V@). It is encour- 

t*’ aging to note that the component V, of V(*) arising from the vector boson msss 

matrix supports the relation (44). Indeed the V,(l) - -Tr(p’)(ll] given by Eq. (35) 

and constrained by the condition (Z* + Y*),, = 1 attains its minimum at ZII? 

which is consistent with the relation (44). 

In summary, we have demonstrated in a specific model, that a leading order 

superweak gauge interactions can generate a pure (without mass term) self inter- 

action of the composite Higgs boson with quantum numbers of the massless gauge 

boson. Furthermore it has been argued that under certain conditions depending 

on higher order effects the Higgs can condense rendering the gauge boson massive 

and leading to a dynamical gauge hierarchy. Obviously it is imperative to identify 

a class of models which possess the properties (c.f.Eq.(1,2)) necessary for a general 

realization of the program proposed in this note. 
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